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Antonio González-Arroyo and Robert Kirchner

Depto. de F́ısica Teórica C-XI, and
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1. Introduction

The dynamics of gauge fields is expected to encompass some of the most fascinating phe-

nomena, as confinement and chiral symmetry breaking, whose non-perturbative character

makes them difficult to understand and describe. Lattice Gauge Theory has opened the

way to a first principles calculational scheme of all the non-perturbative properties of the

theory. In this way considerable evidence has accumulated over the years that Quantum

Chromodynamics (QCD) does indeed possess this behaviour. It is, nonetheless, important

to know if it is possible to have a conceptually simpler description of these phenomena in

terms of a restricted set of relevant degrees of freedom.

With the discovery of the instanton [1] and the subsequent qualitative solution of the

UA(1) problem [2], giving the η′ its mass by its coupling to the UA(1) current anomaly, it

became clear that topology plays an important role in the low energy behaviour of QCD.

A longstanding question, which is still open, is whether the mechanism responsible for the

spontaneous breakdown of chiral symmetry (SχSB) does involve topological configurations,

with the instanton as fundamental structure. This point is connected with the more general
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one about the validity and usefulness of the semiclassical approach to describe this and other

non-perturbative aspects of QCD. In this respect a semiclassical picture of the vacuum was

developed, the Instanton Liquid Model [3 – 5], which has met a certain degree of success in

explaining some quantities. This picture provides a popular mechanism for the spontaneous

breakdown of chiral symmetry, through the Banks-Casher relation [6], which relates the

chiral condensate with the non-zero density of low-lying modes of the Dirac operator. The

latter have its origin in the individual zero modes which the Atiyah Singer index theorem

attributes to each instanton. In a dilute situation, with small overlap between neighbouring

instantons, these modes appear as quasi-zero modes contributing a finite density [7].

Although the mechanism is fairly appealing, there are several criticisms to the overall

picture. For example, it has been suggested that the ILM as main mechanism for SχSB

is inconsistent with the expansion in the number of colors N . The argument is that at

large-N the instanton weight in the action is exponentially suppressed, while effects from

quantum fluctuations decay according to 1/N . This implies that at large-N instantons

are not likely to play a role in the breakdown of chiral symmetry, since their effect is

washed out by quantum fluctuations. Therefore, according to this argument, either chiral

symmetry is broken differently for large-N than for N = 3, or SχSB will not be caused

by instantons in QCD. Another point of debate is the diluteness of the instanton vacuum.

Other descriptions based on a more dense multi-instanton setting [8], might still inherit

the same mechanism for SχSB [9].

All these questions about the general role of topology and semiclassical methods in

QCD should be resolved within the framework of lattice gauge theory. For this purpose

different methods have been developed to extract the global and the local topology of

lattice gauge fields in thermal equilibrium. The main problem one encounters in examining

Monte Carlo generated lattice gauge field configurations, is that they are very rough, with

sizable fluctuations at the scale of the lattice spacing. This noise dominates over the

long wavelength signal one is willing to investigate. The roughness is to be expected, and

is a reflection of the ultraviolet divergences of quantum field theory. Indeed, it is well

known that even for a free field theory, continuous fields have zero-measure. In Quantum

Mechanics the divergence is milder, but still differentiable paths have zero-measure. Thus,

the rough aura of smooth gauge fields is essential in contributing sizably to the path

integral. This, sometimes ignored fact, tells us that in the semiclassical approximation,

smooth configurations act as labels to denote the finite probability regions centred around

them.

A frequently used method to solve the aforementioned roughness problem is the so

called cooling method [10, 11]. Under this generic term a number of different procedures

have been developed, which have in common that they produce a sequence of increasingly

smooth configurations by locally minimising the action. Ideally, the method should produce

the smooth labelling configuration associated to the rough initial one. However, if cooling

is applied indefinitely one would reach a relative minimum of the action, in which most

of the local information would be lost. Much before this limit is reached it might have

introduced distortions in physical characteristics of the vacuum such as the instanton size

distribution. Thus, beyond being useful in determining global topological quantities as the
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topological susceptibility [12], its validity to determine the local topology of the field, has

been heavily and severely criticised. Nevertheless, we think that cooling is indeed a useful

method when used judiciously and in certain situations. The main issue has to do with

a hierarchy in the variations of the action within the space of gauge field deformations.

We know that variations associated to rough fields produce large changes in the action.

On the other hand, there is sometimes a subclass of smooth gauge fields configurations

associated to “almost flat” directions. This is indeed the case in a dilute instanton gas

situation, for example. This hierarchy then would translate into an equivalent hierarchy of

“cooling time” scales. Thus, when cooling is applied, movement in the steeper directions

happens relatively fast, while that along the “almost flat” directions is much slower. In

addition, since cooling is a local algorithm, the evolution of large momenta components

starts earlier. In any case, the usefulness of the semiclassical approach depends also on the

observable being studied. As in every reduced degrees of freedom approach, a la Ginzburg-

Landau, the projected degrees of freedom have to capture the essence of the physics being

studied. Accordingly, if physical results have to be extracted from cooling, they should be

independent of the number of cooling steps applied within a certain window, or change in

a prescribed and computable fashion.

A different approach to disentangle the local topological structure of the lattice field,

is commonly referred to as smoothing. It is a local procedure which substitutes a link with

a weighted average of link paths. The prototype of smearing is APE-smearing [13], but as

in the case of cooling there is a number of algorithms in use, which however all share the

common feature of averaging in some sense the gauge field locally. As in the case of cooling,

smearing has successfully been used in determining the topological susceptibility [14 – 17],

but has been the object of criticism when local topological questions are concerned. It is

frequently stated that from a conceptual point of view smoothing is preferable over cooling,

since the continuum limit of the gauge field is not changed in the process. However, as

in the case of cooling, an indefinite number of steps would end up washing out all local

structures. Therefore, similar considerations as before are necessary.

A more recent proposal to study vacuum topology uses fermionic degrees of freedom.

Introduced some time ago [18], fermionic methods rely on their response to the background

gauge field. They suffer from the traditional problems associated to the breaking of chiral

symmetry on the lattice. With the discovery that lattice Dirac operators which satisfy

the Ginsparg-Wilson relation, as in the domain Wall formulation [19 – 21] or the overlap

operator [22, 23], possess a lattice remnant of chiral symmetry at finite lattice spacing

and satisfy exact index theorems, fermionic methods have become fully applicable. In

various works [24 – 33] these methods have been used to investigate the question of the local

topological structure of the QCD vacuum. It is argued that an instanton dominated vacuum

will lead to a spectrum of low-lying eigenmodes of the Dirac operator, which originates from

the mixing of the zero-modes each instanton would contribute if it were isolated. The local

chirality of the near zero-modes is then used as a measure of the topological origin of the

mode. It has been found [24, 25, 34, 27, 28] that the local chiral structure of the low-

lying modes of the Dirac operator does not exclude the ILM as a microscopically accurate

picture of the vacuum. However, it is still a matter of debate whether the structure of local
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chirality found in the low-lying modes does indeed have a topological origin closely related

to instantons or follows from other structures [29, 35, 36, 31 – 33].

In the present work we want to propose a new method to investigate the local topolog-

ical structure of the gauge fields, which is a hybrid of the above. It adheres to the idea of

using fermionic quasi-zero-modes to investigate the underlying local topology of the config-

urations. However, in our proposal we use the Dirac operator in the adjoint representation.

One of the advantages of using adjoint zero-modes instead of fundamental ones is that some

of these modes do exactly mimic the structure of the action density for classical solutions

of the equations of motion. These particular modes are the supersymmetric partners of

the corresponding gauge fields. They possess a peculiar reality property which allows to

distinguish them from other modes. Thus, for gauge field configurations which are classical

solutions of the equations of motion, we can construct two functions S± which reproduce

the shape of the self-dual and anti-self-dual parts (respectively) of the action density up to

an overall normalisation. Following the same reasoning as in [37, 29], for a smooth back-

ground gauge field which is “almost” self-dual (as for example a configuration consisting of

dilute (anti)instantons) we expect to find an “almost” supersymmetric solution from which

we can reconstruct the form of the underlying gauge field.

The main usefulness of this idea arises in the presence of quantum fluctuations. The

quantities S± are less sensitive to the ultraviolet modes than the action density itself.

This follows from the non-local (extended) nature of these observables. Thus, as we will

see, it is still possible to reconstruct the long wavelength features of the configuration

and its topological structure in the presence of quantum fluctuations of limited size. This

paper is devoted to presenting the observables, the numerical method and to displaying

its behaviour for smooth configurations, as well as in the presence of controlled quantum

fluctuations. A detailed analysis of Monte Carlo generated configurations is deferred to

later works. For that, it is desirable to use a chiral invariant lattice Dirac operator, as the

overlap. In the present paper we have used Wilson fermions and our results indicate that

even in the worst cases studied, the new observables seem to extract the local topology of

the configuration after a very small (1-3) number of cooling steps are applied.

The paper is organised as follows: In section 2 we review the main continuum formulas

concerning the low-lying eigenstates of the massless adjoint Dirac operator (adjoint modes),

on which our numerical method is based. First, we discuss the situation for solutions of the

classical equations of motion. We identify the supersymmetric zero-modes and discuss their

properties. We then study the behaviour of the observables for configurations in the vicinity

of a solution. In section 3 we discuss the lattice setup, i.e. the operators, the algorithms

and the configurations used throughout our work. We also introduce the numerical method

which we use to project onto the supersymmetric or the “almost” supersymmetric solution

of the Dirac operator in a given background field. In section 4 we apply the method

to specific configurations in order to explore its ability to reconstruct the form of the

underlying gauge field. We start by considering (anti)self-dual configurations and we show

how our numerical method is capable of isolating the supersymmetric solution, and how

we can, with a high degree of accuracy, reconstruct the shape of the action density from

these solutions. We then proceed with more complex smooth fields such as the non self-
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dual case of an instanton anti-instanton pair. Finally we introduce quantum fluctuations.

This we do by applying a given number of heating Monte Carlo steps to an initial one-

instanton configuration. For large β and a small number of cooling steps we have control

that the underlying topological structure of the configuration is unchanged and we can

check the ability of our observables to reconstruct it. We also present results for smaller

values of β. Here, the quantum fluctuations can change the long wavelength structure of the

configuration, so our method is then used in conjunction with cooling and smearing. Results

are promising, but we believe a more accurate analysis has to be done employing a chiral

invariant lattice Dirac operator. Finally, in section 5 we will summarise our conclusions.

2. Adjoint modes of the Dirac operator

In this section we will shortly revise the main formulas and explain the philosophy of

our method in the continuum. We will be using the notation collected in the appendix.

Let us consider smooth SU(N) Yang-Mills field configurations on 4-dimensional euclidean

space-time. Although the topology of space-time is not essential for the construction, in

order to explain the numerical applications on the lattice, we will take space-time to be

given by a 4-dimensional torus. Gauge fields are then connections on a (SU(N)) bundle

over the torus; the latter are classified into topologically inequivalent classes determined

by the twist sectors nµν and the instanton number Q = (N−1)
4N

nµν ñµν + q, where q is an

integer [38, 39].1 It is customary to split the antisymmetric integer-valued twist tensor nµν

into its spatial (mi = 1
2εijknjk), and temporal (ki = n0i) components. In this form the

instanton number reads

Q = q +

(

N − 1

N

)

~k · ~m, q ∈ Z (2.1)

Notice that the instanton number is not necessarily an integer since 1
4nµν ñµν = ~k · ~m need

not be a multiple of N .

We will now consider spinor fields Ψ(x) transforming in the adjoint representation of

the gauge group. One can study the spectrum of the Dirac operator in the background of

the gauge field configuration:

6DAΨ(λ) = iλΨ(λ) (2.2)

The eigenvalues iλ are (at least) twice degenerate as a consequence of (euclidean space)

charge conjugation symmetry, which follows from the reality of the adjoint covariant deriva-

tive. Thus, for any solution Ψ(λ) of eq. 2.2 we can construct a new one as follows:

Ψ(λ)
c −→ γ5CΨ(λ) ∗ (2.3)

where ∗ denotes complex conjugation. This can be easily proven by complex conjugat-

ing eq. 2.2. The new solution is orthogonal to the previous one (this follows from the

antisymmetry of C).

1In the mathematical literature for SU(2) these are associated to Stiefel-Whitney and Chern classes

respectively. The reader is referred to ref. [40] for a mathematically rigorous introduction to the subject.
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The positive and negative values of λ are exactly mapped onto each other by mul-

tiplying the eigenvector by γ5. In addition, there might be zero-modes (λ = 0). The

Atiyah-Singer index theorem expresses the index of the Dirac operator (number of zero-

modes of positive chirality minus the number of zero modes of negative chirality) in terms

of the instanton number:

index 6DA = 2N Q (2.4)

Notice that although Q need not be an integer, the index is always an even number. As a

matter of fact, in the presence of non-zero twist (~k, ~m 6= 0), the gauge group is SU(N)/Z(N)

and the topological charge should be computed in the adjoint representation, which a

faithful representation of this group. Then, the topological charge becomes precisely equal

to the integer 2NQ. It is easy to understand the evenness as due to the two-fold degeneracy

mentioned previously, which affects zero-modes of each chirality.

The positive and negative chirality zero-modes (ψ±) satisfy the following Weyl equa-

tions:

D̄Aψ+ = 0 (2.5)

D̂Aψ− = 0 (2.6)

respectively. Contrary to the situation for zero-modes of the Dirac operator in the funda-

mental representation, the shape of adjoint zero-modes is in some cases directly expressible

in terms of the action density of the gauge field. In particular, suppose that Aµ is a gauge

field configuration which is a solution of the euclidean equations of motion (not necessarily

self-dual or anti-self-dual), then the following four-spinor:

Ψa(V, x) =
1

8
Fa

µν(x)[γµ, γν ]V (2.7)

is an adjoint zero-mode for any constant four-spinor V [41, 42]. This provides, if non-

zero, two linearly independent positive chirality Ψa
+(x) and two negative chirality Ψa

−(x)

zero modes. The gauge invariant densities |Ψa
±(x)|2 are equal (with the normalisation

given in eq. (2.7) and unitary V ) to the self-dual/anti-self-dual parts of the action density

respectively. This is the crucial result that we are using in what follows. Since, the spinor

field eq. 2.7 can be obtained by applying a supersymmetry transformation to the gauge

fields, we will refer to it by the term “supersymmetric zero-mode”.

There is an interesting property satisfied by Ψa
±(V, x) which will allow us to single it

out when there are several zero-modes present. To explain it, it is better to take the chiral

representation for the Dirac matrices given in appendix A. Choosing V † =
(

1 0 0 0
)

one

gets an adjoint zero-mode of positive chirality such that the real part of the first spinor

component of <(Ψa+(V, x)) vanishes in every space-time point, for any value of the Colour

index and all components in Colour-space. Explicitly this positive chirality solution takes

the form:

Ψa
+ = i











(Ba

3
+Ea

3
)

2
(Ba

1
+Ea

1
)

2 − i
(Ba

2
+Ea

2
)

2

0

0











. (2.8)
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For V † = (0 1 0 0) the positive chirality solution (Ψa
+)c = γ5C(Ψa

+)∗ is found. In case of a

self-dual gauge field, electric and magnetic field components coincide: ~Ba = ~Ea. The reality

property of this zero-mode is non-trivial: for a generic solution it cannot be implemented

by simply performing a gauge transformation or taking an appropriate choice of V . The

negative chirality solutions can be worked out analogously, and the same conclusion follows.

We have investigated whether the reality property is shared by other zero-modes. In

the simplest case of a single SU(2) instanton we have 4 positive chirality adjoint zero-

modes, grouped in two charge-conjugate pairs. One of the pairs is the one corresponding

to eq. (2.7), and the other does not satisfy the property. We have also investigated the

general ADHM [43] case, which expresses adjoint zero-modes in terms of the ADHM data.

Except in exceptional limits, this property only takes place for this special zero-mode.

After this preamble we will now explain the philosophy of our method. Consider the

case of a general gauge field configuration, not necessarily an exact solution of the euclidean

classical equations of motion. Our strategy is to define a preferred spinor field in each chi-

rality sector (a preferred section). The corresponding densities give rise to two positive

definite functions of space-time S±. Their structure will trace that of the gauge field from

which they are constructed. We will exploit the previous considerations by requiring that

for gauge fields which are solutions of the classical equations of motion these quantities S±

will coincide with the supersymmetric mode densities mentioned previously. Thus, they

will be directly proportional to the self-dual or anti-self-dual parts of the action density

(for left and right chiralities respectively). However, the main advantage of our observ-

ables compared to the action densities themselves appears when considering configurations

containing quantum fluctuations. Our observables will be better behaved in the ultraviolet.

There can be several ways to make the choice of section in order to implement the

program. It is at present unclear to us if there is an optimal choice. A particular simple

and elegant possibility is to take as preferred section the eigenfunction of lowest eigenvalue

(ground state) of the positive-hermitian operators O±, given by the restrictions of −DD̄

(for left spinors) and −D̄D (for right spinors) to the space of states satisfying the reality

condition. These operators can be rewritten as real symmetric operators acting on the

space of real three-component functions as follows:

(O±)ab
ij = ∆abδij ± 4F± c

k εikjfacb (2.9)

where ∆ab is the covariant laplacian in the adjoint representation and F± c
k = 1

2(Ec
k ±Bc

k).

The indices a, b, c represent Colour in the adjoint representation and i, j, k run from 1 to 3.

The considerations made earlier in this section show that for a classical solution of

the euclidean equations of motion, O
(0)
± has a non-degenerate ground state with vanishing

eigenvalue, and the densities S± are the self-dual and anti-self-dual action densities. If

we now perturb the gauge field configuration, it is clear that the non-degeneracy of the

ground state is preserved for small enough deformations. One can use perturbation theory

to compute the structure of the ground state in this case. The variation of the ground

state (and its density) does not agree with the variation of the action density. Instead,

it is expressed in terms of the Green function of the operator O
(0)
± . This is a non-local

– 7 –
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expression which suppresses the small wavelength fluctuations with respect to the large

wavelength ones. This is the effect we were looking for.

For technical reasons, related to the availability of code and data, in the numerical part

of this paper we have chosen a definition of the densities which is slightly different from

the one presented in the previous paragraph. Rather than imposing reality and looking

for the ground states of O±, we have searched within the space of low lying modes of the

Dirac operator, those which best satisfy the reality condition. This is a change of order of

the basic ingredients which, as we will see in the following sections, also gives rise to the

required behaviour.

3. Lattice methods

3.1 Lattice Dirac operator

In order to translate the above procedure to the lattice, a suitable discretisation of the

adjoint Dirac operator has to be adopted. For this pilot study we have chosen Wilson

discretisation in the adjoint representation:

(DW )αβ
ab (x, y) = 4rδabδxyδ

αβ −

−1

2

4
∑

µ=1

[

δy,x+µ̂(r + γµ)αβVµ,ab(x) + δy+µ̂,x(r − γµ)αβ(V T )µ,ab(y)
]

, (3.1)

where Vµ,ab(x) is the link in the adjoint representation of the gauge group (see the appendix,

eq. (A.2)).

The above operator has the following properties:

C−1DW C = DT
W ,

γ5D
†
W γ5 = DW ,

which implies that (γ5DW ) is hermitian.

For our numerical work we will consider the eigenstates of the positive operator

(γ5DW )2. Because of the symmetry properties described by eq. (2.3) the eigenspaces are

(at least) two-fold degenerate.

Let us comment on the eigenvalue structure of (γ5DW )2 for self-dual or anti self-dual

background fields. From the Atiyah-Singer index theorem we know that for a massless

continuum Dirac operator in the adjoint representation of the gauge group, and in the

background of a SU(N) gauge field carrying charge Q, we will find Index(D/) = 2N|Q|
zero-modes, with definite chirality. On the lattice, using (γ5DW )2 as Dirac operator, this

translates to finding 2N |Q| eigenvectors with “small” eigenvalues and given chirality. These

“small” eigenvalues are separated by a gap from a more densely populated band. In what

follows we will refer to the modes with small eigenvalues in the above sense as approximate

zero-modes.
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Another important point concerns the chiral properties of the Wilson-Dirac operator.

The explicit breaking of chiral symmetry by this operator might pose a problem, since

the properties of the eigenmodes of the Dirac operator we wish to study on the lattice

depend very much on chirality. The smaller the value of the parameter r, the smaller is the

breaking of naive chirality. However, this conflicts with the splitting given to the doublers.

Our final choice has been to work at the small value r = 0.3 of the Wilson parameter. As

we will verify a posteriori this choice is small enough so that the properties we wish to study

that depend on chirality are not too seriously affected. To check that there is no sizeable

contamination of doublers in the low edge of the spectrum that we study, we computed the

matrix elements in the corresponding eigenspace of the Wilson operator, defined by:

(W )αβ
ab (x, y) = 4δabδxyδ

αβ − 1

2

4
∑

µ=1

[

δy,x+µ̂δαβVµ,ab(x)δy+µ̂,xδαβ(V T )µ,ab(y)
]

, (3.2)

This procedure has been used previously by our group and is known to work well for smooth

gauge field configurations. For rough, Monte Carlo generated configurations it is certainly

desirable to use a discretisation which is more respectful of chiral symmetry, such as the

Neuberger operator [22, 23]. Nevertheless, for the sake of our paper we concluded that the

much less computationally costly Wilson-Dirac operator still allowed us to exemplify the

validity of our idea.

3.2 Projecting onto the supersymmetric solution

In section 2 we have defined our procedure in the continuum. Our goal is to construct

two positive functions of space S± for each gauge field configuration. For the case that the

gauge field is a solution of the euclidean equations of motion S± they reproduce exactly the

shape of the self-dual and anti-self-dual parts of the action density. Deforming away from

them, we have argued that these quantities are less sensitive to the ultraviolet modes of the

gauge field than the action density itself. Thus, in the presence of quantum fluctuations

they produce an estimate of the long-range topological structure of the configurations.

To provide a lattice implementation, let us first consider the case in which the link

variables are a lattice discretisation of a background gauge field which is a solution of the

classical euclidean equations of motion having a non-trivial self-dual part. In this case we

first have to look at the low-lying eigenstates of the Wilson-Dirac operator. This space of

states should contain the discretised zero-modes. We then explore within this space to find

the state that best projects onto the positive chirality supersymmetric solution eq. (2.8) of

the Weyl equation. To single out this solution we make use of the reality property of the

cuadrispinor of eq. (2.7) discussed in section 2. On the lattice this is done by looking at

the linear combination of approximate zero-modes that has minimal imaginary part of the

first spinor component for all colours and at each point of space-time. We also require that

the solution is as chiral as possible. If we indicate by φi the elements of the set of linearly

independent quasi-zero modes, then our solution can be written as

Ψ+ = λiφi (3.3)

– 9 –
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The coefficients λi are chosen such that

c =
∑

x,a

(Im Ψ1,a
+ (x))2 +

∑

x,a,s=3,4

(Re Ψs,a
+ (x))2 + (Im Ψs,a

+ (x))2 (3.4)

is minimal.

In the same way, for a field having a non-trivial anti self-dual part, the negative chirality

solution Ψ− corresponding to eq. (2.8) in the continuum, can be calculated by minimising

in eq. (3.3) the imaginary part of the third component and the first and second component

(chirality).

In terms of the coefficients λi eq. (3.4) can be written as a quadratic form:

c = 〈v,Mv〉 , with v =

(

Re λi

Im λi

)

, M =

(

A B

BT C

)

. (3.5)

The matrix M is 2n dimensional, where n is the number of eigenstates of the Dirac operator

among which the minimisation is carried out. It is straightforward to work out the detailed

form of the sub-matrices A, B and C:

Ak,l =
∑

x,a

Imφ1
kImφ1

l +
∑

x,a,s=3,4

Imφs
kImφs

l + Reφs
kReφs

l ,

Bk,l =
∑

x,a

Imφ1
kReφ1

l +
∑

x,a,s=3,4

Imφs
kReφs

l − Reφs
kImφs

l ,

Ck,l =
∑

x,a

Reφ1
kReφ1

l +
∑

x,a,s=3,4

Reφs
kReφs

l + Imφs
kImφs

l ,

M is also hermitian, positive, and for normalised vectors v the minimal eigenvalue of M is

the minimum of expression (3.4). The corresponding eigenvector v provides the real and

imaginary part of the coefficients λi.
2 The lattice approximation Ψ± to the supersymmetric

solution can be obtained by using eq. (3.3) with the λi obtained in the previous procedure.

Then, S±(x) are then defined as:

S+(x) = 〈(Ψ+)L, (Ψ+)L〉 , S−(x) = 〈(Ψ−)R, (Ψ−)R〉 . (3.6)

where brackets denote scalar products in spinor and colour space. Note that since the

reality property is very restrictive, finding the vector that minimises expression (3.4) in

a larger space containing all approximate zero modes, will, up to numerical errors, not

influence result. This is crucial, since one does not know how many zero-modes one should

find for a generic gauge field. This observation will also play a role later in testing the

applicability and stability of the above described numerical procedure.

3.3 Technicalities

Let us briefly mention some technical details of this work. For the numerical part we used

SU(2) configurations throughout. The self-dual gauge configurations have in all cases been

obtained by standard cooling [10, 11].

2The complete diagonalisation of M can be carried out by standard libraries.
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Next to cooling we also use APE-smearing [13] to smoothen the configurations in some

cases. The Nth-level APE-smeared link with smearing parameter c is defined as:

U
(i)
µ (x) = (1 − c)U (i−1)

µ (x) +
c

6

±4
∑

α=±1
|α|6=µ

U (i−1)
α (x)U (i−1)

µ (x + α̂)U (i−1)
α (x + µ̂)†,

with U
(i)
µ (x) projected back in SU(2) after each smearing step. For small smearing param-

eter c this corresponds to a diffusion process with a diffusion radius:

Rs = Nc.

To introduce short range ultraviolet fluctuations the heat-bath algorithm of [47] was used.

The lattice action used is the usual Wilson action. The topological charge operator we use

to identify the charge of smooth gauge field configurations is the field theoretic operator

discussed in [46]. The low-lying eigenstates and their respective eigenvalues of the operator

(γ5DW ) are calculated with the conjugate gradient algorithm proposed by Kalkreuther and

Simma [44], and with the implicitly restarted Arnoldi algorithm [45]. For lattice sizes 84,

124 and 123 ∗ 24 we computed about 10 to 20 eigenstates.

4. Results

In this section we will present the results obtained by applying the numerical procedure of

projecting onto the supersymmetric modes of the adjoint Dirac operator described in the

previous sections. We will consider certain SU(2) gauge configurations on the lattice in

an increasing order of complexity. First we investigate the case of smooth (anti)self-dual

configurations. This will test the efficiency of our method to identify the supersymmetric

zero-mode eq. (2.8) within the subspace of low-lying eigenstates. The situation becomes

more difficult the larger the value of the topological charge |Q|, since the dimensionality of

the zero-mode manifold (4|Q|) increases.

After, we will also apply the procedure to smooth configurations which are not solutions

of the classical equations of motion, and in particular the case of an instanton anti-instanton

pair. Thus, the solution will not be an exact zero-mode of the Dirac operator anymore.

Finally, we will conclude by adding quantum fluctuations to the gauge field configurations.

This is done by subjecting them to a given number of Monte Carlo updating steps.

4.1 Smooth self-dual configurations

We begin by applying our procedure to obtain the supersymmetric zero-mode of the adjoint

Dirac operator for a number of (anti)self-dual configurations with increasing values of the

topological charge |Q| (see table 1). The smallest absolute value of topological charge we

consider is Q = −1
2 , which demands the use of twisted boundary conditions (〈m,k〉 6= 0)

as explained in section 2.
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lattice: L, T S/(8π2) QL Twistm Twistk r #Eigenst.

8,8 0.493 -0.47 1 1 1 1 1 1 0.3 10

12,12 1.02 -0.90 0 0 0 0 0 0 0.3 16

12,12 1.51 -1.41 1 1 1 1 1 1 0.3 16

12,12 1.97 1.86 1 0 1 0 1 0 0.3 20

Table 1: Configurations for which the reconstruction of the supersymmetric zero-mode was carried

out. The values of QL were obtained with the field-theoretic unsmeared topological charge operator.

The second column gives the total action S divided by 8π2.

Eigenvalue 〈φ, γ5φ〉
λ1=2.44 * 10−3 -0.998

λ3=2.68 * 10−1 0.108

λ5=2.68 * 10−1 0.108

λ7=2.68 * 10−1 0.108

λ9=2.93 * 10−1 -0.106

Table 2: Lowest eigenvalues of the operator (γ5DW )2, and the chirality of the corresponding

modes, for the configuration with Q = − 1

2
.

1. Q = −1
2 , m={111}, k={111}

In the case of an anti self-dual Q = −1
2 field there are only two zero-modes, which

correspond to the supersymmetric solution eq. (2.8). We have numerically calculated

the ten lowest-lying modes of the operator (γ5DW )2 in this background. The results

are summarised in table 2. Notice that the eigenvalues are twice degenerate as follows

from the symmetry φi = γ5C
−1φ∗

i+1 (see section 2). In the table we also show the

chirality (〈φ, γ5φ〉) of each mode.

There is a clear gap of two orders of magnitude between the first two eigenvalues and

the higher states. Accordingly, we can identify the modes pertaining to λ1,2 with the

zero-modes. This is also clear from the chirality of the modes. To confirm that their

structure is the one given by eq. (2.8), we compare the chiral density

〈ΨR,ΨR〉 ∝a→0 Tr[FµνFµν ] + O(a2), (4.1)

of the lowest lying mode with the action density. The shapes are displayed in figure 1

for a given plane, and show a nice match up to an overall normalisation. The latter

might be fixed by the value of the topological charge alone.

It is important to test the stability of the method with respect to the number of

eigenmodes considered, since ultimately one wants to apply the method to situa-

tions for which the number of quasi-zero modes is not determined a priori. For that

purpose, we have considered the full space of ten eigenmodes and applied the min-

imisation condition (3.4) to the matrix M (see section 3.2). The vector that achieves

the minimum is indeed dominated by the two low-lying modes, with the remaining
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Figure 1: Action density F 2 (left) and chiral density 〈ΨR, ΨR〉 (right) along a t-z plane, for the

configuration with Q = − 1

2
.

Eigenvalue 〈φ, γ5φ〉 Eigenvalue 〈φ, γ5φ〉
λ1=7.79 * 10−5 -0.997 λ9=5.11 * 10−2 0.057

λ3=7.40 * 10−3 -0.976 λ11=5.34 * 10−2 -0.057

λ5=1.35 * 10−2 0.178 * 10−2 λ13=7.49 * 10−2 0.067

λ7=2.25 * 10−2 -0.164 * 10−2 λ15=8.41 * 10−2 -0.075

Table 3: Lowest eigenvalues of the operator (γ5DW )2 and chiralities of the respective eigenstates,

for the configuration with Q = −1.

modes giving contributions two orders of magnitude smaller. The density profile is

only slightly changed.

2. Q = −1, m=k={000}
For an anti self-dual Q = −1 configuration the space of zero-modes is four dimen-

sional. To find the zero-mode of eq. (2.8) we have calculated the sixteen lowest-lying

eigenstates of (γ5DW )2 in this background. The results are shown in table 3. We

find four small eigenvalues which are separated by one order of magnitude from the

higher ones. The corresponding eigenvectors have definite chirality, and we identify

these modes as the zero-modes predicted in the continuum by the Atiyah-Singer index

theorem.

In principle the solution (2.8) that we are looking for is a linear combination in the

space of these zero-modes. Applying the minimisation within this four dimensional

space, we indeed find that the minimising vector Ψ− has the expected structure

given by eq. (2.8). We exhibit this by plotting the chiral density (4.1) in a fixed plane

and comparing it to the action density in the same plane (see figure 2). Both the

action density and the chiral density behave as A(|x|2 +ρ2)−4) around the maximum.

The anti-instanton size ρ is determined to be equal to 3 and 2.9 lattice spacings
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Figure 2: Action (left) and chiral (right) densities for the Q = −1 configuration, for a given t-z

plane.

Eigenvalue 〈φ, γ5φ〉 Eigenvalue 〈φ, γ5φ〉
λ1=9.00 * 10−4 -0.997 λ9=1.16 * 10−1 -0.085

λ3=1.38 * 10−3 -0.995 λ11=1.23 * 10−1 0.086

λ5=3.25 * 10−3 -0.990 λ13=1.32 * 10−1 0.077

λ7=1.05 * 10−1 0.090 λ15 = 1.36 * 10−1 -0.082

Table 4: Lowest lying eigenvalues of the operator (γ5DW )2 and chiralities of the respective eigen-

state, for the configuration with charge Q = − 3

2
.

respectively. Including in the minimisation all eigenstates that we have calculated,

the same linear combination is selected (new coefficients are suppressed by two orders

of magnitude) as in the space of zero-modes. Accordingly, also in the case of Q = −1

we obtain stable results.

3. Q = −1.5, m={111}, k={111}
In the case of the Q = −1.5 configuration we find 6 low-lying modes that are divided

by a gap of about two orders of magnitude from a band of higher eigenvalues (see

table 4). Again we find by minimising expression (3.4) in the space of these lowest

lying modes that the resulting linear combination is of the form of eq. (2.8) (see

figure 3). Including all higher eigenmodes in the minimisation does not change the

linear combination appreciably, and hence, also in this case the minimisation is stable.

4. Q = 2, m={101}, k={010}
The next case we consider in order to test our method is Q = 2. We find eight

low-lying modes (see table 5) which are divided by an order of magnitude from the

higher eigenvalues. As above, minimising eq. (3.4) selects the wave function eq. (2.8)

among the eight lowest lying modes which we associate to the zero-modes of the

continuum configuration (see figure 4). As in all other cases we observe stability of

the projection onto the supersymmetric mode when the higher modes are included.
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Figure 3: Action (left) and chiral density (right) for the Q = −1.5 configuration; both in the t, z

plane.

Eigenvalue 〈φ, γ5φ〉 Eigenvalue 〈φ, γ5φ〉
λ1=6.28 * 10−4 0.997 λ11=8.87 * 10−2 0.090

λ3=1.20 * 10−3 0.995 λ13=1.02 * 10−2 -0.085

λ5=1.98 * 10−3 0.991 λ15=1.14 * 10−2 0.084

λ7=7.27 * 10−3 0.982 λ17=1.21 * 10−2 -0.085

λ9=7.50 * 10−2 -0.094 λ19=1.30 * 10−2 -0.080

Table 5: Lowest lying eigenvalues of the operator (γ5DW )2 and chiralities of the respective eigen-

state, for the configuration with Q = 2.
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Figure 4: Action (left) and chiral (right) densities for the Q = 2 configuration; Both given for y-z

plane.

If a (anti-)self-dual configuration consists of well separated instantons or anti-

instantons, a new complication can arise. In the continuum, as the separation becomes

infinite, the zero-modes tend to those of isolated instantons, one of which will satisfy the

reality condition. This is one of the limiting cases that we mentioned before for which

there is more than one zero-mode satisfying the reality condition. It is clear that the chiral
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density of all states in this subspace of real zero-modes reproduces the sum of the action

density of all the instantons weighted in various ways. As the instantons approach, the

reality only remains true for a single (charge conjugate pair) eigenmode weighting all in-

stantons equally: the supersymmetric zero-mode. On the lattice, corrections might spoil

the picture for sufficiently separated instantons. The state which minimises eq. (3.4) might

have different weights for different well-separated structures. A signal that this is actually

happening can be obtained from the hierarchy of low-lying eigenvalues of M . A set of

small eigenvalues separated by a large gap from higher ones is a clear indication of this

situation. The supersymmetric solution we are looking for is then a linear combination

of the states constructed from the eigenstates pertaining to the minimal eigenvalues of

M . For sufficiently smooth configurations the correct weights can be constrained since the

contribution to the total action and topological charge of each separated structure must

be in rational fraction of the total.

We have looked at several Q = 2 configurations that contained well separated (anti)

self-dual lumps. In one case we found precisely the scenario described above, while for

other configurations the numerical method described in section 3.1 projected directly onto

the supersymmetric solution of eq. (2.8).

So far we have checked that our numerical method of projecting onto the supersym-

metric zero-mode eq. (2.8) works well for (anti) self-dual fields. In the next subsection we

will consider a more complicated structure which no longer is a solution of the classical

euclidean equations of motion.

4.2 Other smooth configurations

Our next step will be to consider the case of smooth configurations which are not solutions

of the classical equations of motion. For that purpose we study a Q = 0 configuration

consisting of an instanton and an anti-instanton, each carrying charge |Q| = 1. Note that

in this case we do not have exact zero modes in the continuum. However, we expect that

if the instantons are sufficiently separated, so that their overlap is small, the zero-modes

pertaining to each instanton will give rise to near-zero modes in the spectrum of (γ5DW )2.

In our Q = 0 instanton anti-instanton pair case, we should find eight near-zero modes

stemming from the four zero-modes of an isolated instanton. Furthermore, we expect to

be able to identify within the space of near-zero modes one state in each chirality sector

arising from the supersymmetric zero-modes eq. (2.8) of the instanton and anti-instanton

separately.

Q = +1 − 1 = 0, m=k={000}

To produce a smooth Q = 0 lattice configuration consisting of an instanton anti-instanton

pair, we glued along the time direction the previously mentioned Q = −1 configuration to

a time reflected copy of itself. The resulting configuration has an increased action density

along the plane of gluing. We then applied several cooling steps to diminish the action.

The resulting configuration (see figure 5) has an action density which looks indeed like a

superposition of an instanton and an anti-instanton. For this configuration we computed

the twenty lowest-lying eigenmodes of the operator (γ5DW )2 at r = 0.3 (see table 6). We
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Figure 5: Action density (left) and charge density (right) of the glued Q=0 configuration.

Eigenvalue 〈φ, γ5φ〉 Eigenvalue 〈φ, γ5φ〉
λ1=2.50 * 10−3 -0.725 λ11=1.32 * 10−2 0.119

λ3=3.42 * 10−3 0.337 λ13=3.61 * 10−2 -6.54 * 10−2

λ5=4.94 * 10−3 -0.439 λ15=3.66 * 10−2 6.70 * 10−2

λ7=6.44 * 10−3 0.804 λ17=5.20 * 10−2 -4.67 * 10−2

λ9=1.195 * 10−2 -0.117 λ19=5.26 * 10−2 5.00 * 10−2

Table 6: Lowest lying eigenvalues of the operator (γ5DW )2 and chiralities of the respective

eigenstates, for the instanton-antiinstanton configuration.

see that in our case no clear gap in the eigenvalue spectrum can be identified. The zero-

modes of the original Q = −1 configuration (see table 3) have been lifted to near-zero

modes. Given the large separation of the instanton and anti-instanton, we expect that the

near-zero modes associated to the supersymmetric states lie within the eight lowest-lying

modes. Hence, we computed the observables S± by minimising expression (3.4) within

this space. These quantities are shown in figure (6). We see that they reproduce nicely

the shape of the self-dual and the anti self-dual parts of the action density respectively.

We recalculated S± within the full space of twenty low-lying eigenmodes. Once more, our

results were found to be stable.

4.3 Heated configurations

We now want to go one step further and investigate the efficiency of our method in the

presence of quantum fluctuations. As explained in the introduction this amounts to the

consideration of rough configurations. Optimally we would like to add quantum fluctuations

without distorting the long-wavelength topological structure of the configuration, so that

we can compare our observable fields S± with the mentioned structure. To achieve this

goal we use the following method. We begin with a classical anti self-dual configuration

for definiteness. Then we apply a given number of heat-bath steps with a certain value of

β. The local nature of the heat-bath algorithm [47] guarantees that the high-momentum

modes will thermalize faster than the low momentum modes. Based on results obtained in

other contexts [14] we conclude that a total of ten to twenty heating steps should be enough
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Figure 6: Chiral density (Ψ−
R

)†Ψ−
R

(right) and (Ψ+

L
)†Ψ+

L
(left), for our instanton-anti-instanton

configuration.

for this purpose. The value of β determines the typical size of the quantum fluctuations (

∼ 1/
√

β), as well as the effect of non-linearities.

Thus, we started by considering a very high value of β, namely β = 22. This introduces

gaussian perturbations (up to gauge equivalence). As initial configuration, we chose the

second one in table 1. We applied a total of twenty heating steps to it. After each heating

step, we calculated the sixteen lowest-lying eigenstates of (γ5DW )2 at r = 0.3. From them,

we calculated the observable S− according to the procedure outlined in section 3.2. The

results obtained confirm the good behaviour of S− with respect to quantum fluctuations.

At each heating step β, S− resembled closely the shape of the starting configuration. This

contrasts with the evaluation of the action density itself (or its anti-self-dual part) which

is dominated by noise, masking completely the initial topological structure. Indeed, the

action density after heating is two orders of magnitude higher than the action density of

the original field.

Then we considered two smaller values of β, β = 5 and β = 2.57. The latter lies in the

relevant scaling region of Monte-Carlo simulations. As we lower β the fluctuations have a

larger size and we depart from the gaussian situation, in which analytical control is still

possible. Furthermore, the probability of generating typical lattice artifact effects, like the

dislocations [48, 49], increases. These structures can contribute sizably to the topological

charge for some lattice definitions of the quantity. This effect on the topology can also

show up in the Dirac spectrum. It has been shown in SU(2) gauge theory that, with

the plaquette action, dislocations appear quite frequently, but that they disappear after

only a few cooling steps [49, 50]. For this reason we introduce a small number of cooling

steps (3) on the heated configuration and proceed with our method on this slightly cooled

configuration. The use of a fixed and small number of cooling steps might be acceptable if

we can show that the results are insensitive to the details of their implementation.

For that purpose we have also used APE-smearing [13] (see section 3.3) instead of

cooling to smoothen the heated configurations. We have chosen N = 8 and c = 0.45

as smearing parameters, so that the effective smearing radius and the number of cooling

steps are of the same magnitude. As we will show below both methods do not only give
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heating S/(8π2) QL Scool QL,cool Ssmear QL,smear

0 1.02 -0.90 – – – –

5 991.8 -0.56 6.5 -0.87 5.0 -0.87

10 993.9 -0.41 6.6 -0.86 5.2 -0.84

15 990.3 -1.02 6.6 -0.86 5.1 -0.86

20 993.9 -0.60 6.5 -0.86 5.0 -0.86

Table 7: Values of the action S (divided by 8π2) and topological charge (field theoretic) of the

heated (at β = 5.00), cooled (3 times) or smeared configurations on a 124 lattice.
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Figure 7: Action density of the heated configuration after 5 heating steps (left) with β = 5.00,

and after applying 3 cooling steps to the previous one(middle). The right figure is the chiral density

Ψ†
R
ΨR obtained from the near zero-modes of the cooled configuration.

consistent results, but lead to values of S± that are strikingly similar.

4.3.1 Updating at β = 5.00

Again we started with the Q = −1 configuration appearing as example two in subsec-

tion 4.1, with action density displayed in figure 2. At β = 5.00 we subjected the configu-

ration to twenty heating steps. Every fifth step we produced a (three times) cooled or a

(N = 8 c = 0.45) smeared configuration. The corresponding values of of the topological

charge and the action can be found in table 7. As we can see no extra charge seems to

have been created during heating.

For each of the cited configurations the sixteen lowest lying eigenmodes of the oper-

ator (γ5DW )2 have been calculated at r = 0.3. We then determined S± by applying the

minimisation of expression (3.4) in this sixteen dimensional subspace of eigenmodes. The

results for 5 and 20 heating steps can be found in figure 7, 8.

We observe that in all cases the shape of S− = Ψ†
RΨR resembles fairly well the action

density of the original configuration. After twenty heating steps the qualitative agreement

is still quite good. Similar results are obtained for the smeared configurations. Hence, we

conclude that our results are independent of the method used — smearing or cooling — to

remove the lattice artefacts.
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Figure 8: The same quantities as in the previous figure but after 20 heating steps at β = 5.00.

heating S/(8π2) QL Scool QL,cool Ssmear QL,smear

0 1.02 -0.90 – – – –

5 2074.7 -0.96 16.6 -0.88 14.56 -0.88

10 2119.7 0.47 21.8 -0.84 21.48 -0.84

15 2110.7 1.38 23.5 -0.89 23.46 -0.86

20 2110.2 -0.84 22.7 -0.91 22.85 -1.00

Table 8: Action and topological charge (field theoretic) of the heated (at β = 2.57), cooled and

smeared configurations on a 124 lattice.

It is interesting to point out that the heating process does not seem to have changed

the long wavelength structure of the initial configuration. This is due to the large value

of β and the small number of heating steps. In the next subsection we will see that the

situation changes for smaller values of β.

We also extracted the instanton size parameter ρ from both the action density and

the chiral density Ψ†
RΨR. The two values (2.55 and 2.61 lattice spacings respectively for 5

heating steps) match remarkably well indicating that even in these heated configurations

our procedure does not significantly alter sizes. Furthermore, errors are smaller and the

standard instanton shape is more cleanly exhibited by the chiral density.

4.3.2 Updating at β = 2.57

Let us now turn to the β = 2.57 case, which is the most interesting case in understanding the

behaviour of our observables previous to their use for Monte Carlo generated configurations.

Our procedure is identical to the previous case. Results for the topological charge and the

action can be found in table 8.

At this value of β we expect that, after a sufficient number of heating steps are applied,

the configuration will have modified the long-wavelength structure of the initial configu-

ration. It is then unclear what the shape of S± has to be. Notice, however, that the

value of QL after cooling indicates that no extra overall charge has been created during
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Figure 9: The same as figure 7 but after 5 heating steps at β = 2.57
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Figure 10: The same as figure 8 for β = 2.57

the updating. This does not exclude that a number of instanton-anti-instanton pairs have

been created in this process.

As in the previous case, we compute the fields S± in terms of the low-lying eigenmodes

of the operator (γ5DW )2 after 5 and 20 heating steps. Results are shown in figures 9, 10.

We observe, that after 5 heating steps one can still recognise in S− the structure

of the original anti-instanton. Numerical estimates of its size extracted from the action

(2.87(27)) and chiral (2.85(5)) densities are also consistent within errors. After 20 heating

steps, however, we can see a richer structure emerging. The main peak of the original

instanton is still present, but two additional lumps in this plane seem to have been created

during the heating process. Since there seems to be no net creation of topological charge,

we expect to find two structures in S+ corresponding to positively charged lumps. The

result is shown figure 11, and we can clearly identify two isolated structures, which we

associate to two instantons that have been created during the heating process.

Let us compare the chiral densities obtained from the cooled configurations to the

ones that result by carrying out the same procedure on the smeared configurations. The

corresponding chiral densities for the heated and successively smeared configurations can
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Figure 11: Chiral density Ψ†
L
ΨL of minimised linear combination obtained from the cooled con-

figuration at β = 2.57.
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Figure 12: Chiral density Ψ†
R
ΨR (left) of minimised linear combination obtained from the smeared

configurations after 5 heating steps (left) and after 20 heating steps (right).

be found in figure 12. These figures when compared to the chiral densities obtained from

the cooled configurations are strikingly similar. Accordingly, we conclude that smearing

as well as cooling disposes of the lattice artefacts in the same manner and that the same

underlying structure is revealed by our procedure.

5. Conclusions

In this work we have proposed a new tool to investigate the vacuum structure of gauge

field theory. It is in the spirit of using fermionic modes as probes of gauge field structure.

However, we make use of fermions in the adjoint representation. For gauge fields which are

exact solutions of the euclidean equations of motion, Supersymmetry gives rise to a direct

connection between the structure of some zero-modes and the gauge field strength. In the

presence of quantum fluctuations one can use this idea to construct observables S± which

reflect the underlying self-dual and anti-self dual components and are better behaved in

the ultraviolet.
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In this paper our main goal has been to present the ideas and to test its ability to

reconstruct the underlying gauge field structure in an increasingly complex but controlled

situation. Thus, we have first analysed the case of smooth self-dual gauge fields and

shown that indeed our method is capable of extracting the supersymmetric zero-modes

that match the shape of the action density. Next we have studied the case of smooth,

non-self-dual configurations. Finally we have analysed configurations having controlled

quantum fluctuations. This was achieved by applying a number of heat-bath sweeps to

an initially self-dual configuration. We used the number of heating steps and the value of

β to monitor the size of quantum fluctuations and their local nature. For small enough

number of heating steps or large enough β, the chiral density of the linear combination

of low-lying eigenmodes that best approximates the supersymmetric mode, reproduces the

action density of the underlying anti-instanton on which heating was performed. This

contrasts with the value of the action density itself, which has little resemblance to the

initial structure.

For β = 2.57 we have found that after 20 heating steps, next to the original anti-

instanton, additional structures have developed during the heating process. We interpret

them as instanton anti-instanton pairs that have been created during updating. Although

we had to apply three cooling steps to the configuration before analysing the zero-modes,

we argue that this operation has not distorted the underlying structure that we are looking

for. In support of this claim we showed that the shape obtained is remarkably similar to

the one gotten from the Ape-smeared configuration instead.

The analysis presented in this paper serves as a test of the usefulness of our con-

struction in being able to unravel, for a given gauge field configuration, the underlying

topological structure masked by short wavelength fluctuations. The next step should be

that of addressing Monte Carlo generated configurations directly. For that purpose it is

presumably essential to use a lattice Dirac operator, such as Neuberger operator, which

preserves an exact notion of chirality.

We hope our work provides a new tool that can be used, by itself or in conjunction with

other methods, to study the topological structures present in the QCD vacuum in the spirit

of the works mentioned in the introduction [24, 25, 37, 26, 34, 27, 28, 51, 29, 31 – 33, 52, 53].
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A. Appendix

In this appendix we list the conventions and definitions that were used throughout this

work.
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Generalities

The number of colours has been denoted by N . For the specific numerical calculations

we work in the adjoint representation of SU(2), hence N = 2. Colour in the adjoint

representation is labelled by Latin lower indices of the form a, b, c . . . = 1, . . . , N2 − 1.

Greek lower case letters from the beginning of the alphabet such as α, β, . . . = 1, . . . , 4

label the spinorial indices. Greek lower case letters from the middle of the alphabet such as

µ, ν, ρ, σ, . . . = 0, . . . , 3 denote Lorentz space-time components (in euclidean space-time).

SU(N) group

The generators of the Lie-algebra su(N) of the gauge group SU(N) in the fundamental

representation are denoted by T a with a ∈ {1, . . . , N2−1} and are given by N×N matrices.

Their commutation relations read

[T a, T b] = ifabcT c. (A.1)

where fabc are the structure constants of the group. These generators are normalised

according to

Tr[T aT b] =
1

2
δab.

For a given group element g ∈ SU(N), U(g) will denote its corresponding matrix in the

fundamental representation and V (g) in the adjoint representation. The matrix elements

of the latter can be expressed in terms of U(g) as follows

V (g)ab = 2Tr[U †(g)T aU(g)T b]. (A.2)

Pauli and euclidean Dirac matrices

The symbol τa denotes the Pauli matrices:

τ1 =

(

0 1

1 0

)

, τ2 =

(

0 −i

i 0

)

, τ3 =

(

1 0

0 −1

)

. (A.3)

We also define the quaternionic basis σµ = (11,−i~τ ), σµ = σ†
µ = (11, i~τ ).

The hermitian Dirac matrices γµ in the Weyl representation in euclidean space-time

are given in terms of the previous matrices by

γµ =

(

0 σµ

σµ 0

)

. (A.4)

We also define the following matrices

γ5 = γ1γ2γ3γ0 =

(

11 0

0 −11

)

, C = γ0γ2 =

(

iτ2 0

0 −iτ2

)

, (A.5)

The charge conjugation matrix C fulfils the following relations

C−1 = −C = CT , γT
µ = −C−1γµC, γ5 = C−1γ5C. (A.6)
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The eigenstates of γ5 with eigenvalue 1 are called positive chirality or left-handed spinors.

Conversely, negative chirality or right-handed spinors apply for the eigenstates of eigenvalue

−1. Any spinor can be decomposed into a sum of a right-handed and a left-handed spinor

ψ = ψR + ψL, where the latter can be obtained from ψ using the projection operators

P± = (11 ± γ5)/2.

For the antisymmetric tensor εµνρσ we take the sign convention ε0123 = 1.
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